Miladin Tanasković Tomislav Bojković Dragoslav Perić

ELECTRICAL ENERGY DISTRIBUTION

Belgrade, September 2008.

ELECTRICAL ENERGY DISTRIBUTION

I Edition

Authors: PhD Miladin Tanasković, Tomislav Bojković and PhD Dragoslav Perić Publisher: Akademska misao, Beograd, Bulevar kralja Aleksandra 73 For the publisher: Marko Vujadinović Reviewers: Prof PhD Jovan Nahman and Prof PhD Dragan Tasić Design: Zorica Marković, academic artist Technical editor: Tomislav Bojković Print: Planeta print, Beograd

NOTE: Copying and reprinting in any way as well as republishing of this book - on the whole or in partswithout previous explicite agreement or written approval of the publisher is forbidden.

Contents	Page
FOREWORD	VII
1 ELECTRIC POWER DISTRIBUTION IN REGULATED AND DE- REGULATED ELECTRIC POWER INDUSTRY	1
INTRODUCTION	3
1.1 History of electric power distribution of Serbia.	3
1.2 Functions and organization of traditionally vertically integrated electric industry	8
1.3 Reasons for de-regulation of traditionally vertically integrated electric industry	10
1.4 Functions and organizational forms of de-regulated electric industry	11
1.5 Basic technical requirements for joint operation of electric power generation, transmission and distribution systems	15
Bibliography	22
2 SHORT CIRCUIT AND EARTH FAULT CURRENTS	23
INTRODUCTION	25
2.1 Calculation of three-phase symmetrical short circuit current (power)	25
2.2 Criteria for dimensioning of distribution transformer substation (DTS) grounding	28
2.3 Calculation of current through the grounding of MV/LV and HV (MV)/MV TS during the earth fault in distribution system with earthed neutral	33
2.4 Maximum potential for dimensioning of grounding in MV/LV TS and distribution system with earthed neutral	35
2.5 Distribution transformer substations grounding	38
2.6 Reduction factor of distribution line	43
2.6.1 Reduction factor of cable line with insulated sheath (XHE cable)	43
2.6.2 Reduction factor of cable line with uninsulated sheath (NPO cable)	44
2.6.3 Reduction factor of overhead line	44
2.7 Lines as grounding	48
2.7.1 Matrix of elementary Γ, Π and T four-poles	48
2.7.2 Own values of elementary Γ, Π and T four-poles	49
2.7.3 Equivalent matrix of Γ , Π and T four-pole serial connection	50
2.7.4 Input impedance of Γ, Π and T four-pole serial connection	51
2.7.5 Grounding impedance of line	53
2.7.6 Grounding impedance of MV cables with insulated sheath	55
2.7.7 Grounding impedance of MV cables with conducting sheath	59
2.7.8 Grounding impedance of overhead line with ground wire	63
2.8 Potential dissipation from HV/MV transformer substation into the medium and low voltage networks	65
2.8.1 Cable line with insulated sheath	66
2.8.2 Cable line with un insulated sheath	67
2.8.3 Overhead line with ground wire	68
2.9 Sizing of single core cable electric protection in 110 kV distribution system	71

2.10 Grounding of MV overhead line towers	
Bibliography	
3 DISTRIBUTION TRANSFORMER SUBSTATIONS (DTS)	
INTRODUCTION	
3.1 Basic concept solutions for the construction of distribution TS	
3.1.1 Selection of number of busbars in TS	
3.1.2 Basic requirements for the selection of location for distribution TS	
3.2 Overvoltages, earthing of power distribution system neutral points, insulation coordination	
3.2.1 Types of overvoltages in distribution system	
3.2.2 Basic criteria for earthing of neutral point	
3.2.3 Realization and characteristics of neutral point grounding equipment	
3.2.4 Connection of neutral point grounding equipment	
3.2.5 Formation of "artificial" neutral point	
3.2.6 Lightning overvoltage protection, application of overvoltage surge	
arresters, insulation coordination	
3.3 Application of relay protection in distribution TS 110/X kV and TS 35/10 kV	
3.3.1 Basic requirements for the selection and testing of the protection	
system	
3.3.2 Protection in function of prevention of heavy outages in substations	
3.3.3 Protection of power transformers in TS 110/X kV	
3.3.4 Protection of power transformers in TS 35/10 kV	
3.3.5 Protection of 110 kV lines in distribution TS 110/X kV	
3.3.6 Protection of 35 kV lines	
3.3.7 Protection of 10 kV and 20 kV lines	
3.4 Power transformers in power distribution systems	
3.4.1 110/X kV Power transformers	
3.4.2 35/10, 5 kV Power transformers	
3.4.3 X/0, 42 kV Power transformers	
3.4.4 Loading capacity of distribution power transformers	
3.5 Distribution transformer substations 110/X kV	
3.5.1 110 kV switchgear	
3.5.2 10 kV, 20 kV and 35 kV switchgear	
3.5.3 Measurement in TS	
3.5.4 Local control in TS	
3.5.5 Remote control and measurement	
3.5.6 Interlocking in TS 110/X kV	
3.5.7 Auxiliary supply and electric installations in TS 110/X kV	
3.5.8 Grounding system and lightning protection system	
3.5.9 Telecommunications in TS	
3.5.10 Fire protection in TS 110/X kV	
3.5.11 Technical requirements for civil engineering works in TS 110/X kV	
3.5.12 Single - pole scheme of 110/X kV TS	
3.6 Distribution transformer substations 35/10 kV	+
3.6.1 Operation conditions	+
3.6.2 Equipment characteristics, measurement, interlocking and control	
3.6.3 Auxiliary supply equipment and electric installations in TS 35/10 kV	
3.6.4 Grounding system and lightning protection system in TS 35/10 kV	

||

_

Content and Preface	
3.6.5 Fire protection in TS 35/10 kV	164
3.6.6 Single - pole scheme of TS 35/10 kV	164
3.7 Distributive TS 10(20)/0, 4 kV, 630 kVA with cable feeders	166
3.7.1 Basic equipment characteristics in DTS	166
3.7.2 Disposition 630 kVA DTS	167
3.7.3 Measurement in 630 kVA DTS	167
3.7.4 Relay protection in 630 kVA DTS	168
3.7.5 Fire protection in 630 kVA DTS	169
3.7.6 Protection from noise in 630 kVA DTS	169
3.7.7 Carrying out of 630 kVA DTS grounding system and touch voltage	171
protection	
3.7.8 Lightning discharges protection	174
3.7.9 Compensation of reactive power in DTS	174
3.7.10 Single - pole scheme of 630 kVA DTS	174
3.8 Pole mounted TS 10(20)/0, 4 kV rated power up to 400 kVA	176
3.8.1 Basic characteristics of pole mounted TS equipment	176
3.8.2 Pole data and spatial configuration of the equipment	177
3.8.3 Relay protection in pole mounted TS	177
3.8.4 Compensation of reactive power in pole mounted TS	177
3.8.5 Grounding of pole mounted TS	177
3.8.6 Single pole scheme of pole mounted TS	179
Bibliography	181
4 DISTRIBUTION CABLE LINES	183
INTRODUCTION	185
4.1 Low voltage cables 0, 6/1 kV	186
4.2 Medium voltage cables 6/10 kV, 12/20 kV and 20/35 kV	187
4.3 NPO vs. UPE cables	190
4.4 Laying of power cable	190
4.5 Laying of power cables in directly in ground and in cable ditches	193
4.6 Approaching and crossing of power cables with railway (tram) tracks and road	195
4.7 Approaching and crossing of power cables with telecommunication cable and with water and sewage pipes	196
4.8 Approaching and crossing of power cables with thermal pipes and gas pipes	197
4.9 Approaching and crossing of power cables with water flow and laying over the bridge	198
4.10 Thermal processes in cable	199
4.10.1 Thermal resistance of cable layers	200
4.10.2 Current carrying capacity of power cable laid in ground	201
4.10.3 Current carrying capacity of power cable laid in the air	208
4.10.4 Heating of cables under short circuit	212
4.11 Currents in electrical protections during the regular operation of three	214
phase cable lines carried out with single core cables	
4.12 Cable accessories	221
4.13 Testing of power cables and cable accessories	223
Bibliography	225

Content and Preface

Content and	preface
-------------	---------

5 DISTRIBUTION OVERHEAD LINES	227
INTRODUCTION	229
5.1 Basic requirements for building of overhead lines	231
5.1.1 Types of overhead lines	231
5.1.2 Elements of overhead lines	234
5.2 Design of overhead line – mechanical calculation	248
5.2.1 General about design of overhead line	248
5.2.2 Additional load (ice loading)	253
5.2.3 Wind load	255
5.2.4 Catenary - chain, sag and tension calculations	257
5.2.5 Distances between ACSR conductors and CC in span	264
5.2.6 Load calculation (force)	267
5.2.7 Selection of tower foundation	276
5.3 Building of overhead line	278
5.3.1 Tower mounting and foundation	278
5.3.2 Conductor mounting	278
5.3.3 Suspension and fitting of ACSR conductors, CC and ABC	281
5.3.4 Extension of ACSR conductors, CC and ABC	283
5.3.5 Crossing of LV overhead line with other objects	286
5.3.6 General requirements for installation, devices and tools	288
5.4 Thermal calculation of overhead line	290
5.4.1 Permissible current load in normal operation	290
5.4.2 Temperature rise of overhead line conductor during short circuit	297
5.5 Overhead line testing	302
Bibliography	304
6 CONSUMERS, CONNECTIONS AND ELECTRICITY METERING	305
INTRODUCTION	307
6.1 Consumer categories and consumer groups	307
6.1.1 Consumer categories	307
6.1.2 General consumer groups	308
6.2 Electrification categories, maximum consumer load	309
6.2.1 Household electrification categories	309
6.2.2 Maximum consumer power for other consumer types	312
6.2.3 Simultaneous load of several groups of different consumer categories	312
6.2.4 Maximum simultaneous load on the level of house connection	313
6.3 Connecting of consumers in power distribution system	316
6.3.1 Realization of overhead connection	317
6.3.2 Realization of cable connection	318
	321
6.3.3 Measuring – distribution switchboard (MRO)	322
	022
6.3.3 Measuring – distribution switchboard (MRO)	
 6.3.3 Measuring – distribution switchboard (MRO) 6.3.4 Tariff and load management 6.3.5 Protection of connections and electrical installations in residential 	326 337

7 QUALITY OF ELECTRICAL ENERGY	343
INTRODUCTION	345
7.1 Quality of consumer service	346
7.2 Reliability of distribution systems	346
7.2.1 Distribution system reliability index	346
7.2.2 Damage due to interruption of electricity supply	350
7.2.3 Calculation of consumer electricity supply reliability	358
7.3 Quality of electrical energy	372
Bibliography	377
8 PLANNING OF POWER DISTRIBUTION SYSTEM	379
INTRODUCTION	381
8.1 Types of power distribution system development plans	381
8.2 Data and bases for power distribution system development study	383
8.3 Technical and economy criteria for power distribution system conception	385
8.3.1 Criterion of permissible voltage tolerance	388
8.3.2 Criterion of permissible current load of system elements	388
8.3.3 Criterion of permissible short circuit currents	389
8.4 Prognosis for electric energy and maximum load needs	390
8.4.1 Prognosis of electrical energy needs	390
8.4.2 Prognosis of maximum power needs	398
8.4.3 Determination of maximum loads of the existing and new TS HV/MV	404
in time of maximum consume load	
8.5 Principles of power distribution system modeling	405
8.5.1 Principles of 110 kV power distribution system modeling	405
8.5.2 Principles of 35 kV power distribution system modeling	406
8.5.3 Principles of 10(20) kV power distribution system modeling	407
8.5.4 Principles of 0, 4 kV power distribution system modeling	411
8.6 Methodology for power flow calculation	415
8.7 Methodology for economic evaluation of variants	417
8.7.1 Profit rates, amortization and maintenance	419
8.7.2 Costs of losses	419
8.7.3 Costs of undelivered electrical energy	421
8.7.4 Investment costs	423
Bibliography	425
9 SMALL POWER PLANTS IN POWER DISTRIBUTION SYSTEM	427
INTRODUCTION	429
9.1 Renewable power energy sources	431
9.1.1 Solar power plants	433
9.1.2 Wind power plants - VE	436
9.1.3 Biomass and wastes small power plants	440
9.1.4 Small hydro power plants - MHE	441

9.2 Alternative fossil fuel electric power plants	444
9.2.1 Fuel cells	444

V

9.2.2 Micro gas power plants	4
9.2.3 Possibility of alternative and renewable power plants application in Serbia	4
9.3 Distributed and disperse generation of electrical energy	4
9.3.1 Distributed generation of electrical energy	44
9.3.2 Disperse generation of electrical energy	4
9.4 Technical requirements for connecting small power plants to distribution grid	44
9.4.1 Basic technical data of small power plant	44
9.4.2 Technical criterion for connecting of small power plants to distribution grid	4
9.4.3 Realization of small power plant connection	4
9.4.4 Metering spot of small power plant	4
9.4.5 Protection of small power plant generator and connection line	4
9.4.6 Compensation of electrical energy (energy) in small power plant	4
9.4 .7 Single-pole scheme of small power plant connection to MV distribution grid	4
Bibliography	4

Content and preface

PREFACE

Electrical energy distribution in regulated and de-regulated power utility presents a particular technical and organizational part of the chain between the supplier and the consumer of electrical energy. The particularity of power distribution companies, compared to other parts of the power utility is in direct contracting relationship with qualified tariff consumers and in the necessity of considering the Law of large numbers upon deciding about technical solutions and characteristics of the electrical distribution system elements.

The basic concepts of the book are theoretical explanations for concrete technical solutions for all areas of electrical energy distribution that are mostly based on many decade positive experiences for exploitation of distribution systems in Serbia. Therefore, the book is dedicated to all engineers dealing in various ways with electrical energy distribution as well as to power engineering students.

The author nave classified the electrical energy distribution subjects into nine chapters.

Chapter one presents the historical development and position of power distribution company in traditionally regulated power utility, some important aspects of technology development, functions and organization forms of de-regulated power utility, as well as the basic technical requirements for joint operation of generation, transmission and electrical distribution systems.

Chapter two treats symmetrical and asymmetrical short circuits in distribution system, criteria for sizing of the distribution transformer substation (TS) grounding system and fulfilling of safety conditions inside and outside TS, overhead line pole grounding, as well as the specific issues concerning cable and overhead line contribution to TS grounding system.

Chapter three deals with concept solutions for all types of distribution TS stressing the neutral point earthing, lightning and commutation overvoltages, as well as the insulation coordination. The special place in this chapter is taken by: standardization of basic characteristics of power distribution transformers (ET) of all transformation ratios, as well as by the relay protection of lines and power transformers (ET). At the end of this chapter the detailed description of TS 110/X kV, TS 35/10 kV and TS X/0, 4 kV stations standardized in ED Serbia is given.

Chapter four gives the selection of power cables that are used in 1 kV, 10 kV, 20 kV and 35 kV distribution systems, technical solutions for cable laying, including approaching to and crossing with other objects. Particularly are considered: thermal processes in cable in normal operation and in short circuit, testing of power cables and accessories, as well as the occurrence of circulation currents in electrical protections of single core cables in normal operation.

Chapter five deals with the issues of design and building of overhead lines made of aluminium conductors steel reinforced (ACSR), covered conductors (CC) or aerial bundle conductors (ABC), also it deals with the problem of telecommunication cable

installation on overhead line poles. Particular attention is given to the mechanical calculation of overhead line: calculation of sags, permissible conductor distances and safety altitudes, forces, selection of concrete pole foundation - the specific user programs are developed for these calculations. Practical guidelines are given for the foundation of poles and installation (tensioning) of conductors, as well as the requirements concerning approaching and crossing of overhead line with other objects. Thermal calculation of overhead line is specially given for normal and short circuit operation, as well as the testing of overhead line elements.

Chapter six presents consumer categories and consumers groups, it deals with the calculation of consumers peak load, particularly in household category. The connection of consumers to the grid is given in more details (the realization of the connection, standardization of metering cabinets, metering of electrical energy, load management). Due to exceptional importance, in this chapter the protection of connection and electrical installations of residential buildings from unpermitted loads, indirect touch and lightning overvoltages are given in detail.

Chapter seven deals with the quality of service to the customers, quality of the supply and quality of delivered electrical energy (frequency, magnitude and wave shape of the voltage). Within the consideration of distribution system reliability the reliability indexes and indexes of damage due to interruption of electrical energy supply are given.

Chapter eight deals with electrical distribution system development planning. The classification of development plans is given, the necessary data and bases for making the development studies and plans, technical and economy criteria for the conception of distribution system are given, certain methods for the forecast of needs for electrical power and energy are presented as well as the principles for the shaping of distribution grid.

Chapter nine gives the conceptual solutions and technical requirements for the connection of small generating sources, with the special emphasis on application of renewable electrical energy sources (Sun, wind, water and biomass). The required technical criteria (maximum permissible power, flickers, higher harmonics) that should be fulfilled for the connection of small generating sources to the grid are given in detail.

Chapters **2**, **4** and **8** were prepared by Miladin Tanasković, and chapters **3**, **5** and **9** by Tomislav Bojković. The same authors have prepared together the Chapters 1 and **6**. Dragoslav Perić has prepared the Chapter **7**.

For the efforts in doing many calculations for Chapter 2, the author Miladin Tanasković thanks to Mr. Vladimir Balkovoj. Also, the authors Tomislav Bojković and Miladin Tanasković thank to Mr. Dragan Tasić for numerical determination of coefficients for the calculation of current load of overhead lines carried out with ACSR conductors, CC and SKS.

On this occasion authors would like to thank to the rewievers Prof. dr Jovan Nahman and Prof. dr Dragan Tasić on their efforts and useful suggestions.

Belgrade, September 2008.

Authors

COMMENT ON THE BOOK:

ELECTRICAL ENERGY DISTRIBUTION

Written by: M. Tanasković, T. Bojković and D.Perić

Publisher: "Akademska misao" Belgrade, Serbia, 2008

The authors of the book are experienced professionals involved in the various aspects of distribution system planning, exploitation and maintenance. During their permanent activities in this area lasting more than a decade they have considerably contributed to many technical solutions and technical normative in this field.

Among other important issues the book treats in depth the grounding of distribution systems and corresponding safety conditions by taking into account the effects of the underground cables as ground electrodes and/or ties connecting various installations building a grounding system. A special chapter is devoted to a detailed description of transformer stations coupling 110 kV.35 kV 10 kV and 0.4 kV networks with specified technical solutions concerning the apparatus implemented, protection and control devices and systems applied. Two chapters consider the methods of selection of the conductor sizes and types of cables and overhead lines with regard to their electrical, thermal and mechanical properties including the overvoltage protection. In a separate chapter are considered the methods for planning the peak loads of different types of consumers, ways of measuring the load consumed and low voltage installations in consumer buildings. The quality of supply is discussed including the availability aspects and the cost of the energy not delivered due to failures, based upon a comprehensive survey conducted among the consumers in authors' country. A chapter is devoted to the issues associated with planning of distribution systems of various types and voltage levels including technical and economy aspects. The last chapter discusses the technical aspects of distributed generation with detailed presentation of recommendable solutions and constructive and operational constraints concerning both the distribution network and the small generating sources.

The book considers in a detailed way various aspects of the planning and operation of nowadays distribution systems in the range from 0.4 kV up to 110 kV and presents good technical solutions based not only upon the theoretical work but also upon the practical experience acquired during a long period. As such, the book could be of interest for those that are involved in management, planning and operation of distribution and industrial electrical power systems as well as for students of associated faculties.

Belgrade, 02.09.2008

Prof. Dr. Jovan Nahman, Dipl.Eng.

Maburan